国立高校入試問題 数学
今回は自校作成校である国立高校の数学図形問題について、書かせていただきます。
1、自校作成問題と一般入試問題の違いは
①解答だけでなく、解答までの考え方や途中式などの記述問題があります。
一般入試の記述問題は証明問題の2題になりますが、国立高校は証明問題1題と説明や途中式を書く問題2題、合計3題が出題されます。説明や途中式を書く問題の対策は、普段から途中式を書く習慣を心掛け、また問題における解説をよく読んで、自分自身でも書けるように練習していくことが大切です。
②解答の数字が整数とは限らない
一般入試問題の解答は、ほとんどが整数に対して、国立高校の解答は、ほとんどが分数になります。解いて、出てきた問題も計算ミスをしているのではないかと不安になります。計算練習をしっかりし、計算について、自信を持てるようにすることは大切です。
③一問の配点が高い
一般入試問題の配点は、証明問題7点、作図問題6点、他の問題が5点の配点になります。一方で、国立高校の数学の配点は、証明問題、記述問題が10点、他の問題は5点から8点になります。計算ミスが命取りとなり、計算ミスは許されません。2と同じように、計算について、自信を持てるように常に練習することが重要になります。
2、国立高校と一般入試の図形問題の違い
最近5年間の一般入試問題、国立高校の図形問題の出題は下記にまとめると
|
都立一般入試問題 |
都立国立高校 |
H30 |
円 |
円 |
H29 |
半円と長方形 |
円 |
H28 |
平行四辺形 |
円 |
H27 |
円と二等辺三角形 |
円 |
H26 |
正三角形 |
円 |
一般入試問題は、様々な図形が出題されていますが、国立高校は円の問題しか出題されていません。
国立高校の受験を考えている生徒は、円についての性質、円周角、おうぎ形などの予習・復習をしていくべきです。
国立高校だけでなく、自校作成問題の対策の仕方は、まずは、一般入試問題などと比較をして、そこから、戦略を考えていくことが大切です。